Approach to Estimate Switching Time Intervals Using Datasheet Parameters 

In Part I of this application note series, a practical framework was introduced to estimate switching power losses in Power MOSFETs by calculating turn-ON and turn-OFF time intervals. These equations provide a useful first-order method for evaluating switching behavior in hard-switching applications using a simplified driver model.

However, applying these equations in real design scenarios quickly reveals a common challenge: several key parameters required for the calculations are strongly dependent on operating conditions and are not always directly available from datasheets in a form suitable for comparison.

This second part of the series addresses that gap.

1. Introduction

In Part I of this series, equations were developed to calculate MOSFET turn ON and turn OFF switching time intervals. These time intervals form the basis for switching power loss calculations in hard switching applications. 

When applying these equations, it becomes evident that additional guidance is required. Several parameters used in the calculations, particularly gate plateau voltage and parasitic capacitances, depend strongly on operating voltage and current conditions. These parameters are not always directly available for the intended use case. 

This application note provides practical methods to estimate these parameters using commonly available datasheet information. Approaches for plateau voltage approximation, reverse transfer capacitance extraction, and output capacitance modeling are presented. These methods enable consistent comparison of MOSFET switching behavior across suppliers when detailed SPICE models are not available. 

The techniques described in this Part II are intended for component level comparison and early-stage device selection. When the objective is application-level loss modeling or worst-case analysis, time domain simulation using validated SPICE models remains the preferred approach. 

 

1.1 ON and OFF time intervals  

From Part I of this series, time intervals for the turn-ON transition are given as follows: 

for Power Loss Calculations in MOSFETs formula 1 mcc semi
Formula 1

 

Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi 2
Formula 2

 

3 Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi  3
Formula 3

 

 

In addition, the turn-OFF transition time intervals were found to be:

Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi  4
Formula 4

 

Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi 5
Formula 5

 

Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi  6
Formula 6

 

Where τ=RG(CGS+CGD), the time intervals are defined as in Figure 1, and the following parameter definition apply: 

 

RG: Gate resistance (internal and external).  

CGS: Parasitic Gate-to-Source Capacitance.  

CGD: Parasitic Gate-to-Drain Capacitance. 

RDS(on): Drain-to-Source resistance when MOSFET is fully-ON.  

Vth: Threshold Voltage. 

Vgp−ON: Plateau Voltage during ON transition. 

Vgp−OFF: Plateau Voltage during OFF transition. 

VGG: Gate external voltage supply DC value. 

VDD: Drain external voltage supply DC value. 

Io: Drain load DC current. 

Formulas 1-6 were derived from a Low-Side Driver sample circuit with inductive load and ideal recirculating diode as the one shown in Figure 2. 

Figure 1a: Turn-On MOSFET Waveforms Figure 1b: Turn-Off MOSFET Waveforms
Figure 5a turn-on MOSFET waveforms  MCC semi - micro commercial components 600x400 Figure 5b turn off MOSFET waveforms -  MCC semi - micro commercial components 600x400

 

Figure 1 – Switching Transition Waveforms 

figure 6 LSD Circuit with inductive load MCC semi - micro commercial components 600x400

 Figure 2 – Low-Side Driver Sample Circuit 

 

2. Parameter approximations 

2.1 Plateau Voltage for ON and OFF stages 

It is clear from equations 2-4 and 6 that Gate Plateau Voltage is a parameter of high importance. However, deciding what voltage to use is often difficult. 

Datasheet will show a Plateau Voltage under a determined set of conditions of Drain Voltage and Current. This value can be extracted from the datasheet Gate Charge plot to be used for calculations (Figure 3). 

Figure 3 – Typical Gate Charge plot from Power MOSFET datasheet - MCC semi

Figure 3 – Typical Gate Charge plot from Power MOSFET datasheet 

Nevertheless, conditions for measuring Plateau Voltage are not standard and therefore looking for an approximation that considers surrounding conditions makes sense. 

According to [1] Plateau Voltage might even be different depending if the device is turning OFF or turning ON, and it will be defined by the following equations: 

Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi  7
Formula 7

 

8 Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi  8
Formula 8

 

Where gm is the transconductance obtained from the slope of the linear portion of the Transfer Characteristics (Figure 4).  

Equations 7 and 8 are an option to derive Plateau Voltages for ON and OFF stages that bring datasheet Plateau to closer reference conditions for parameter comparison of two or more Power MOSFET Part-Numbers. 

Figure 4 – Typical Transfer Characteristics Plot from Power MOSFET datasheet MCC semi

 

Figure 4 – Typical Transfer Characteristics Plot from Power MOSFET datasheet 

 

2.2 Reverse Transfer Capacitance (𝑪𝒓𝒔𝒔) 

From Part I of this series, we know that Reverse Transfer Capacitance  Crss is equal to CGD which is a major parameter for equations 3 and 5. CGD can be obtained by using Gate-Drain charge, QGD, from datasheet dynamic characteristic tables, which lets the following formula to be applied: 

Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi  9
Formula 9

 

When using this method, it needs to be considered that QGD is obtained with a determined VGS value different from zero and that CGD non-linear capacitor is both dependent on VGS and VDS bias values (Figure 5)

Figure 5. Example of Gate-Drain Charge from Power MOSFET Datasheet mcc semi micro comercial components. 

Figure 5. Example of Gate-Drain Charge from Power MOSFET Datasheet 

Another way of approaching this capacitance will let us have values obtained from a standard method [3] that uses same measurement conditions making component comparison more trustable. Crss characteristics plot, Figure 6, is obtained with a sweep of bias voltages for VDS with added small signal vds high frequency disturbances (i.e. capacitances in Figure 6 are small signal capacitances). It is worth noting that is an industry standard to have VGS = 0V during this characterization. 

Figure 6 – Example MOSFET Small-Signal Capacitance plots from Datasheet

Figure 6 – Example MOSFET Small-Signal Capacitance plots from Datasheet 

From this plot, we can read the Crss=CGD value to desired VDS voltage and use it for time interval calculations. That is one valid way of doing it, sufficiently good for comparison purposes. Alternative way is to find an equivalent linear capacitor value related to the charge on the non-linear capacitor at the desired VDS. To do this, all points in the Crss capacitance characteristics need to be extracted and used to simulate the non-linear charge curve with respect to its terminal voltages using the method in [2]. CGD is then obtained applying formula (9). These last two methods allow us to have CGD  values for all MOSFETs in comparison that use the same VDS and VGS bias conditions.

This last simulation step can be regarded as an unnecessary extra step if the analysis goal is just to compare component performance. However, having this simulation allows detailing the non-linear capacitors more completely as is shown in Figure 7.

Figure 7 – Non-linear capacitor charge curve mcc semi
Figure 7 – Non-linear capacitor charge curve (Cd – small signal capacitance at Vx, Ct – equivalent linear capacitor at Vx)  

 

 

 

2.3 Output Capacitance (𝑪𝒐𝒔𝒔

Once CGD is defined, the same approach can be taken for CDS. In similarity with Crss, Output Capacitance Coss is defined in Figure 6 plot. Same benefit of having measurements with a well stablished method is accomplished, this makes conditions between suppliers similar and comparable. 

The value of CDS is obtained after applying the following subtraction:

Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi 10
Formula 10

 

Where, as was detailed above, Coss can be read directly from the small signal non-linear capacitance plot (Figure 5) or the points from this characteristic can be extracted to simulate the non-linear charge curve with respect to Drain-to-Source voltage [2] and use: 

Application Note Quick Guide for Power Losses Calculation in MOSFETS – Part 2 MCC semi 11
Formula 11

 

 

2.4 Gate-Threshold Voltage (Vth

For this application note, the typical threshold voltage defined in the datasheet is used. No detailed calculation method was found in the literature.

In addition, manufacturers typically use the same measurement conditions, namely VDS=VGS, ID=250µA, which makes comparison between devices more straightforward (Figure 8).

Figure 8. Typical Gate-Threshold Datasheet table MCC semi

Figure 8 - Typical Gate-Threshold Datasheet table 

 

3. Calculation example 

3.1 Sample circuit

 

Taking the following values for surrounding conditions on Figure 1 Low-Side driver circuit: 

VGG =1 0V, VDD = 75V, Io =1 5A, Rgext = 10Ω 

an example calculation will be presented here. 

For this MCC’s Power MOSFET MCAC15N15Y will be used along with two competitor MOSFETs that are close in electrical characteristics. Table 1 and Table 2 show these component parameters that are relevant for this analysis. 

Parameter 

Symbol 

MCAC15N15Y 

Conditions 

Drain-Source Maximum Voltage 

VDS

150V 

VGS=0VID=250μA

Gate-Threshold Voltage 

VGS(th)

2V to 4V 

VDS=VGS, ID=250µA

Drain-Source On-Resistance 

rDS(on)

52mΩ (typ)

70mΩ (max) 

VGS=10V, ID=15A

Internal Gate Resistance 

Rgint

1Ω 

f=1MHz, Open drain 

Gate-Drain Charge 

QGD 

4nC 

VDS=75V, VGS=10V, ID=15A

Plateau-Voltage 

Vp 

4.9V 

VDS=75V, ID=15A

Input Capacitance 

Ciss=CGS+CGD

749.9pF 

VDS=30V, VGS=0V, f=1MHz

Output Capacitance 

Coss=CDS+CGD 

301.1pF 

VDS=30V, VGS=0V, f=1MHz

Reverse Transfer Capacitance 

Crss=CGD

27.3pF 

VDS=30V, VGS=0V, f=1MHz

Table 1. Electrical parameters for MCAC15N15Y relevant for calculations.  

 

Symbol 

Competitor A 

Conditions 

Competitor B 

Conditions 

VDS

200V 

VGS=0V, ID=250μA

150V 

VGS=0V, ID=250μA

VGS(th)

2V to 4V 

VDS= VGS, ID=1mA

2V to 4V 

VDS= VGS, ID=35µA

rDS(on)

86mΩ (typ) 

102mΩ (max) 

VGS=10V, ID=12A

42mΩ (typ) 

52mΩ (max) 

VGS=10V, ID=18A

Rgint

1.1Ω 

f=1MHz

2.1Ω 

f=1MHz

QGD 

10.1nC 

VDS=100V, VGS=10V, ID=12A 

1.5nC 

VDS=75V, VGS=10V, ID=9A

Vp 

4.5V 

VDS=100V, ID=12A

5.2V 

VDS=75V, ID=9A

Ciss=CGS+CGD

1568pF 

VDS=30V, VGS=0V, f=1MHz

670pF 

VDS=75V, VGS=0V, f=1MHz

Coss=CDS+CGD 

170pF 

VDS=30V, VGS=0V, f=1MHz

80pF 

VDS=75V, VGS=0V, f=1MHz

Crss=CGD

55pF 

VDS=30V, VGS=0V, f=1MHz

3.4pF 

VDS=75V, VGS=0V, f=1MHz

Table 2. Electrical parameters for competition that are relevant for calculations. 

 

3.2 LTspice Simulation of Sample Circuit 

Simulations using SPICE models from MCAC15N15Y and Competition were performed. From simulation results measured time intervals tON = t21ON + t32ON and tOFF = t21OFF + t32OFF are going to be used in this analysis as a reference. Results are shown in Table 3. Figure 9 shows tON measurement from simulations taken from the point where the 5% of maximum Drain current is reached (0.05∗Io=0.75A) to the point where 5% of the maximum Drain voltage is reached (0.05∗VDD=3.75V). Same points, but with voltage appearing first than current were taken to measure tOFF (Figure 10). 

 

MCAC15N15Y 

Competitor A 

Competitor B 

Δ (MCC – Competition) 

A 

B 

tON=t21ON+t32ON

8.68ns 

18.40ns 

5.46ns 

-9.72ns 

3.22ns 

tOFF=t21OFF+t32OFF

12.43ns 

23.00ns 

5.91ns 

-10.57ns 

6.52ns 

Table 3. Turn-on and turn-off times obtained from simulation measurements 

 

Figure 8. MCAC15N15Y Turn-on time from Simulation MCC semi
Figure 9. MCAC15N15Y Turn-on time from Simulation (Io in green, VDS in dark blue & VGG in light blue) 

 

Figure 9. MCAC15N15Y Turn-off time from Simulation  MCC semi
Figure 10. MCAC15N15Y Turn-off time from Simulation (Io in green, VDS in dark blue & VGG in light blue) 

 

 

3.3 Calculation Using Datasheet Values 

Calculations using datasheets values shown in Table 1 and Table 2 were used to calculate results in Table 4. 

 

MCAC15N15Y 

Competitor A 

Competitor B 

Δ (MCC – Competition) 

A 

B 

t10ON

2.94ns 

6.26ns 

2.91ns 

 - -

 - -

t21ON

2.61ns 

4.24ns 

3.08ns 

 - -

 - -

t32ON

4.37ns 

8.26ns 

2.02ns 

 - -

- - 

tON = t21ON+t32ON

6.98ns 

12.49ns 

5.1ns 

-5.51ns 

1.88ns 

t10OFF

5.89ns 

14.02ns 

5.33ns 

 - -

 - -

t21OFF

4.55ns 

10.09ns 

1.87ns 

- - 

 - -

t32OFF 

4.05ns 

7.12ns 

4.48ns 

 - -

- - 

tOFF = t21OFF+t32OFF

8.60ns 

17.21ns 

6.35ns 

-8.61ns 

2.25ns 

Table 4. Calculation results using datasheet values. 

 

3.4 Calculation Using Plateau Voltage 

Modeling approach of Plateau Voltage described in Section 2.1 was used to obtain results shown in Table 5. 

 

MCAC15N15Y 

Competitor A 

Competitor B 

Δ (MCC – Competition) 

t10ON

2.94ns 

6.33ns 

2.91ns 

 - -

 - -

t21ON

1.22ns 

1.35ns 

1.80ns 

 - -

 - -

t32ON

3.69ns 

7.00ns 

1.73ns 

 - -

- - 

tON = t21ON+t32ON

4.91ns 

8.35ns 

3.52ns 

-3.44ns 

1.39ns 

t10OFF

8.60ns 

18.78ns 

8.99ns 

 - -

- - 

t21OFF

6.32ns 

13.23ns 

2.92ns 

 - -

 - -

t32OFF 

1.33ns 

2.36ns 

0.82ns 

 - -

 - -

tOFF = t21OFF+t32OFF

7.65ns 

15.59ns 

3.75ns 

-7.94ns 

3.90ns 

 

Table 5. Calculation results using Plateau Voltage model (Section 2.1) 

 

4. Conclusions 

Comparing the switching performance of Power MOSFETs across different manufacturers, or between part numbers from the same manufacturer, remains inherently challenging. Variations in measurement conditions directly influence reported device parameters and, as a result, affect any switching performance prediction.

This application note demonstrates that both direct use of datasheet values and the additional plateau voltage modeling approach provide reliable results for comparative analysis. Each method offers a practical approximation of relative switching speed, enabling meaningful comparison of how quickly one device transitions relative to another.

Delta-based comparisons derived from either approach give a clear indication of relative switching performance when devices are evaluated under equivalent operating conditions. The plateau voltage modeling approach presented in this work further improves consistency by normalizing comparisons to a common reference point, which is particularly valuable when published plateau voltage specifications are measured under differing test conditions.

 

 
 References:
  1. [1] Liu, S., Song, S., Xie, N., Chen, H., Wu, X., & Zhao, M. (2021). Miller Plateau Corrected with Displacement Currents and Its Use in Analyzing the Switching Process and Switching Loss. Electronics 2021, 10

  2. [2] Ben-Yaakov, S. & Zeltser, I. (2017). On SPICE simulation of voltage dependent capacitorsIEEE Transactions in Power Electronics 

  3. [3]JEDEC SOLID STATE TECHNOLOGY ASSOCIATION (1985). JESD24 JEDEC Standard for Power MOSFETs 



 

MCC
Post by MCC
February 4, 2026
MCC is a leading integrated device manufacturer (IDM) of discrete semiconductors worldwide. Headquartered in the US, we deliver supply chain assurance, best-in-class support, and a diverse portfolio of 10,000+ advanced components to help customers innovate in automotive, industrial, and beyond.