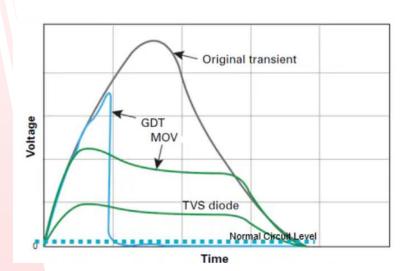


MCC Solutions Guide: TVS Diodes

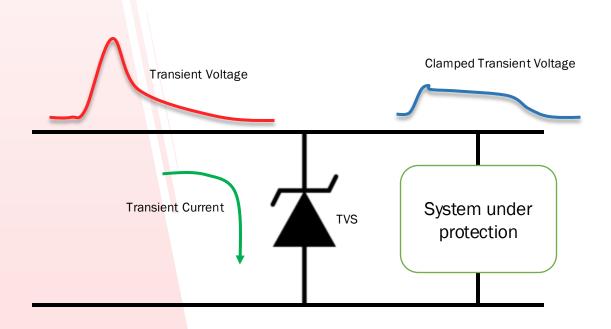
Voltage Transients


- The miniaturization of electronic components has resulted in vulnerability to electrical stress, such as overcurrent and overvoltage.
- Overvoltage could be due to power fault or voltage transients caused by electrostatic discharge (ESD), lightning-induced transients, or inductive load switching.
- Components that can't handle the sudden increase in energy could result in abnormal working behavior, system damage, or potential safety hazards.
- Therefore, voltage transients must be controlled or suppressed to prevent system damage or catastrophic failures.
- Various studies are being carried out to characterize different types of voltage transients. The two most common transient models are lightning transient waveform and ESD waveform.

Overvoltage Protection Devices

- Basically, there are two types of overvoltage protection mechanisms:
 - Clamping: clamps the voltage to certain level, but device suffers high heat generation.
 - Crowbar: short circuits the output to allow high current dissipation.

 The table below shows common overvoltage protection devices and technologies used to suppress transients.


	Clan	nping	Crowbar			
Device	Transient Voltage Suppressor (TVS)	Metal Oxide Varistor (MOV)	Thyristor	Gas Discharge Tube (GDT)		
Technology	Semiconductor	Ceramic	Semiconductor	Spark gap		
Polarity	Uni/Bi-directional	Bi-directional	Uni/Bi-directional	Bi-directional		
Residue Voltage Level	Low	High	Low	Low		
Surge Withstanding Capability	Low	High	Medium	High		
Pulse Cycle Capability	Excellent	Good	Excellent	Good		
Response time	Very Fast	Fast	Very Fast	Slow		
Capacitance	High	High	Low	Low		

- Semiconductor devices generally outperform MOV and GDT in multiple aspects.
- Compared to Thyristors, TVS diodes are more commonly used due to their clamping mechanism and system level compatibility.

What is a TVS?

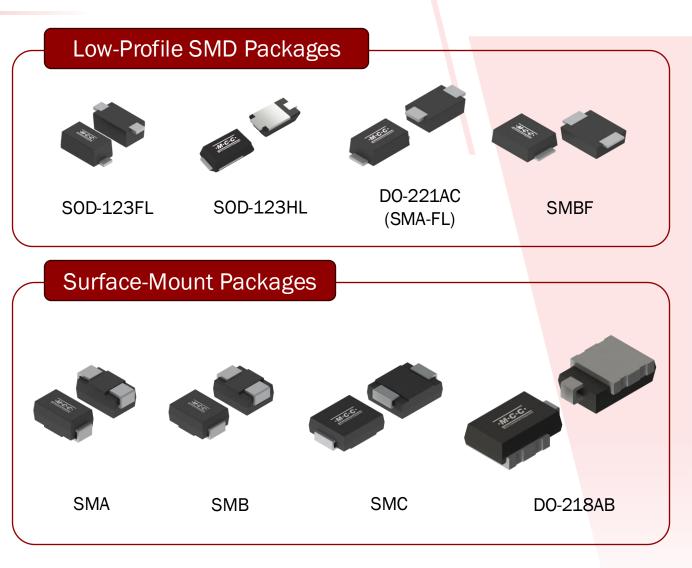
A Transient Voltage Suppressor, also known as TVS, is a semiconductor device that should ideally limit the transient voltage to a defined level to protect the system behind it from overvoltage stress and conduct the excess transient current back to the source.

 The TVS is connected in parallel to the protected line and in reversed direction. The nominal voltage of the line should not exceed the reverse working voltage (VRWM) of the TVS. When the reversed bias voltage exceeds the breakdown voltage (VBR), the TVS starts to conduct. If the voltage continues to raise further, the TVS will go into avalanche breakdown and a huge current will be conducted through the TVS.

VRWM

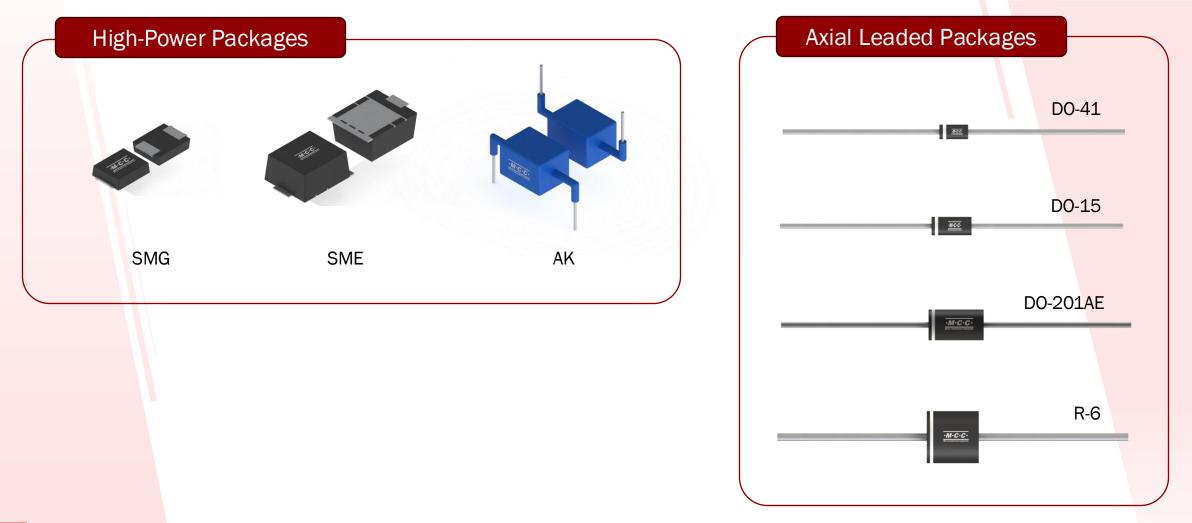
VBR

Vc


 Excessive transient current flows through the TVS back to the source, causing voltage to remain constant, thus protecting the system behind it. However, every semiconductor device is limited by the power it could dissipate. Similarly, TVS works the same way. The clamping voltage (VC) at the peak pulse current (IPP) should not exceed the peak pulse power (PPP) of the TVS. Otherwise, the TVS will suffer electrical overstress and may result in damage or failure.

IPP

Micro Commercial Components[°] MCCSemi.com | Powered by Service


MCC's TVS Diodes

- MCC offers more than 4,000 TVS diodes for selection, and about 40% of them are AEC-Q101 qualified.
- As an integrated device manufacturer, MCC manages every single detail — from materials and chip design to assembly and testing — to ensure consistently high-quality TVS diodes are shipped to our customers.
- Throughout the years, innovation and development have always remained a priority at MCC. Our TVS diodes are approaching their 5th generation of technology, a testament to our proven quality.
- Other than SMA, SMB & SMC packages, MCC offers low-profile packages, such as SOD-123FL, SOD-123HL, SMA-FL & SMBF with heights as low as 1.15mm. The tables on the following pages feature a matrix of our non-automotive-grade TVS diodes with peak pulse power, packages, configuration, family & reverse working voltage ranges listed.

MCC's TVS Diodes Packages

MCC's Non-Automotive TVS

Non-Autom	Non-Automotive-Grade TVS (surface-mount type)					
P _{PP} (W)	Configuration	Package	Family Series	VRWM (V)		
	Bi-dir	SOD-123FL	<u>SMF</u>	5 ~ 170		
200		SOD-123FL	<u>SMF</u>	5~170		
	Uni-dir	SOD-123HL	<u>SMH</u>	5 ~ 100		
	Bi-dir	SOD-123FL	<u>SM4F</u>	5 ~ 45		
		DO-221AC	<u>SMAF</u>	5 ~ 300		
			<u>SMAJ</u>	5 ~ 440		
		SMA	SMAJP4KE	5.8 ~ 495		
400			<u>SMAJS</u>	24		
400		SOD-123HL	<u>SM4H</u>	5 ~ 100		
		SOD-123FL	<u>SM4F</u>	5 ~ 100		
	Uni-dir	DO-221AC	SMAE	5 ~ 300		
		SMA	<u>SMAJ</u>	5 ~ 440		
		SIVIA	SMAJP4KE	5.8 ~ 495		

Non-Automotive-Grade TVS (surface-mount type)					
P _{PP} (W)	Configuration	Package	Family Series	VRWM (V)	
500	Uni-dir	SMB	<u>SMBSAC</u>	5 ~ 50	
		DO-221AC	SMA6JFL	11~85	
		SMBF	SMBF	5 ~ 220	
	Bi-dir	SMA	<u>SMA6J</u>	5 ~ 58	
	Di-QII	SMB	<u>SMBJ</u>	5 ~ 440	
			SMBJL	220 ~ 440	
			SMBJP6KE	5.8 ~ 468	
600		DO-221AC	SMA6JFL	5 ~ 130	
		SMBF	SMBF	5 ~ 220	
		SMA	<u>SMA6J</u>	5 ~ 58	
	Uni-dir		SMBJ	5 ~ 440	
		SMB	SMBJL	220 ~ 440	
		SIVID	SMBJP6KE	5.8 ~ 468	
				SMBJP6KEL	214 ~ 342

MCC's Non-Automotive TVS

lon-Automotive-Grade TVS (surface-mount type)			Non-Automotive-Grade TVS (axial leaded type)						
P _{PP} (W)	Configuration	Package	Family Series	VRWM (V)	P _{PP} (W)	Configuration	Package	Family Series	VRWM (V)
	Bi-dir	SMB	SMB10J	5~120	400	Bi-dir	D0-41	<u>P4KE(5.8~495)</u>	5.8 ~ 495
1000	BI-UII	SIVID	SMBJ1.0KE	5.8 ~ 77.8	400	Uni-dir	DO-41	<u>P4KE(5.8~495)</u>	5.8 ~ 495
1000	Uni-dir	SMB	SMB10J	5 ~ 120		Bi-dir	D0-15	<u>P5KE(5~200)</u>	5 ~ 200
	on-ai	SIVID	SMBJ1.0KE	5.8 ~ 77.8	500	BI-OIL		<u>SA(5~170)</u>	5~170
		SMB	<u>SMB15J</u>	15 ~ 58	500	Uni-dir	DO 15	<u>P5KE(5~200)</u>	5 ~ 200
	Bi-dir	SMC	SMCJ1.5KE	5.8 ~ 495		Uni-dir	D0-15	<u>SA(5~170)</u>	5~170
1500		SIVIC	<u>SMCJ</u>	5 ~ 440	600	Bi-dir	D0-15	P6KE(5.8~512)	5.8 ~ 512
1300		SMB	<u>SMB15J</u>	15 ~ 58	600	Uni-dir	D0-15	<u>P6KE(5.8~512)</u>	5.8 ~ 512
	Uni-dir	SMC	SMCJ1.5KE	5.8 ~ 495		Bi-dir	D0-201AE	<u>1.5KE(5.8~467)</u>	5.8 ~ 467
		SIVIC	SMCJ	5 ~ 440	1500	Lini din	D0-201AE	<u>1.5KE(5.8~467)</u>	5.8 ~ 467
2000	Bi-dir	SMB	SMB20J	20~58		Uni-dir	DO-ZOIAL	<u>LCE(6.5~28)</u>	6.5 ~ 28
2000	Uni-dir	SMB	SMB20J	20~58	2000	Bi-dir	R-6	<u>3KP(5~220)</u>	5 ~ 220
3000	Bi-dir	SMC	<u>SMLJ</u>	5 ~ 440	3000	Uni-dir	R-6	<u>3KP(5~220)</u>	5 ~ 220
3000	Uni-dir	SMC	SML	5 ~ 440		Didia	DC	<u>5KP(5~440)</u>	5 ~ 440
5000	Bi-dir	SMC	<u>5.0SMLJ</u>	11~400	5000	Bi-dir	R-6	<u>5KPL(22~188)</u>	22~188
5000	Uni-dir	Jni-dir SMC <u>5.0SML</u>	11~400	5000	Uni-dir	R-6	<u>5KP(5~440)</u>	5~440	
						Uni-dir	С-О	<u>5KPL(22~188)</u>	22~188
					c.000	Bi-dir	R-6	<u>SLD(10~60)</u>	10~60
<u>C•C•</u>					6000	Uni-dir	R-6	<u>SLD(10~60)</u>	10~60

MCC's High-Power TVS

- Applications exposed to harsh environments are susceptible to strong transients and interferences. Typical 5kW TVS may suffer to keep the system protected. In such cases, high-power TVS, such as 15kW or 30kW TVS could come in handy.
 - <u>15KP series</u>
 - <u>30KP series</u>
- Further up, higher power TVS such as MCC's AK series are characterized using peak pulse current waveform of 8/20us, which is the testing requirement by safety standards, such as UL or IEC for lightning surge protection. The table below shows MCC's AK series product ranging from 1kA to 15kA peak pulse current.
 - <u>AK series</u>

High-Power TVS (axial leaded type)					
P _{PP} (W)	Configuration	Package	Family Series	VRWM (V)	
	Bi-dir	DC	<u>15KP(17~280)</u>	17~280	
15000		R-6	<u>15KPL(17~280)</u>	17 ~ 280	
15000	Uni-dir	R-6	<u>15KP(17~280)</u>	17~280	
			<u>15KPL(17~280)</u>	17~280	
20000	Bi-dir	R-6	<u>30KP(28~288)</u>	28~288	
30000	Uni-dir	R-6	<u>30KP(28~288)</u>	28~288	

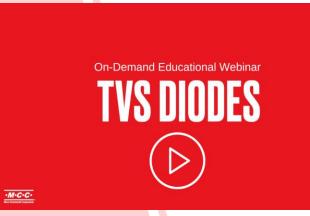
High-Power TVS (IPP rating)					
I _{PP} (А)	Configuration	Package	Family Series	VRWM (V)	
1000	Bi-dir	AK	<u>AK1(76)</u>	76	
2500	Bi-dir	SMG	<u>SMGJ(80)</u>	80	
3000	Bi-dir	AK	<u>AK3(30~430)</u>	30~430	
6000	Bi-dir	AK	<u>AK6(58~430)</u>	58~430	
10000	Bi-dir	SME	<u>SMEJ(58~86)</u>	58~86	
10000		AK	<u>AK10(58~430)</u>	58~430	
15000	Bi-dir	AK	<u>AK15(58~76)</u>	58~76	

MCC's Automotive TVS

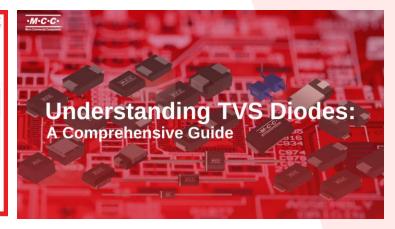
- MCC's automotive TVS diodes went through stringent reliability testing to ensure they meet the highest industry standard: AEC-Q101 qualification.
- Automated production facilities are implemented to minimize human error and contamination, improve efficiency, and ensure the consistent quality of every single TVS diode we produce.
- MCC offers AEC-Q101 qualified TVS diodes ranging from 200W to 6600W peak pulse power. They are available in various SMD packages and can operate up to a 175°C junction temperature. The tables show the automotive TVS product range offered by MCC.

Automotive-Grade TVS					
P _{PP} (W)	Configuration	Package	Family Series	VRWM (V)	
	Bi-dir	SOD-123FL	<u>SMFQ</u>	5 ~ 100	
200	Uni-dir	SOD-123FL	SMFHE3	5 ~ 100	
	Ulli-ull	300-1231 L	<u>SMFQ</u>	5 ~ 100	
		SOD-123FL	<u>SM4FHE3</u>	6 ~ 45	
	Bi-dir	SMA	SMAJHE3	5 ~ 190	
			SMAJQ	5 ~ 190	
			SMAJP4KEHE3	10.2 ~ 185	
400			SMAJP4KEQ	5.8 ~ 185	
+00	Uni-dir	SOD-123FL	SM4FHE3	6 ~ 100	
			SMAJHE3	5 ~ 190	
		SMA	SMAJQ	5 ~ 190	
		SIVIA	SMAJP4KEHE3	10.2 ~ 185	
			SMAJP4KEQ	5.8 ~ 185	

MCC's Automotive TVS


Automotive	Automotive-Grade TVS				
$P_{PP}\left(W\right)$	Configuration	Package	Family Series	VRWM (V)	
		DO-221AC	SMA6JFLQ	5 ~ 85	
		CN44	SMA6JHE3	10~100	
		SMA	SMA6JQ	10~20	
	Bi-dir		SMBJHE3	5 ~ 190	
		SMB	SMBJQ	5 ~ 190	
			SMBJP6KEHE3	10.2 ~ 185	
600			SMBJP6KEQ	5.8 ~ 185	
800	Uni-dir	DO-221AC	SMA6JFLQ	5 ~ 85	
		SMA	SMA6JHE3	10~100	
			SMA6JQ	10~100	
			SMBJHE3	5 ~ 190	
		SMB	SMBJQ	5 ~ 190	
			SMBJP6KEHE3	10.2 ~ 185	
			SMBJP6KEQ	5.8 ~ 185	

Automotive	e-Grade TVS			
P _{PP} (W)	Configuration	Package	Family Series	VRWM (V)
			SMCJ1.5KEHE3	10.2 ~ 185
	Bi-dir	SMC	SMCJ1.5KEQ	5.8 ~ 185
	DI-UII	SIVIC	SMCJHE3	10~190
1500			SMCJQ	5 ~ 190
1900			SMCJ1.5KEHE3	10.2 ~ 185
	Uni-dir	SMC	SMCJ1.5KEQ	5.8 ~ 185
	om-air		SMCJHE3	10~190
			SMCJQ	5 ~ 190
	Didir	SMC	SMLJ48HE3A	10~48
2000	Bi-dir	SIVIC	SMLJQ	5 ~ 48
3000	l luci alia	CMO	SMLJ48HE3A	10~48
	Uni-dir	SMC	SMLJQ	5 ~ 48
5000	Bi-dir	SMC	5.0SMLJHE3	5 ~ 85
5000	Uni-dir	SMC	5.0SMLJHE3	5 ~ 85
	Bi-dir	DO-218AB	SM8SHE3	14 ~ 43
6600	Uni-dir	D0-218AB	SM8SHE3	10~43


Explore the additional TVS resources below, or contact us at mccsemi.com.

On-Demand Educational Webinar TVS

Lightning strikes, power line surges, and other transient events are no match for MCCS TVS solution Our robust portfol of transient voltages suppressons involutes undirectional autoconfigurations with low leakage current, as well as popular package sizes. Choose from our wide selection, including auto-grade options with devere peak pulse power ratings and revense standoff voltages, to find the deal solution for your application.

Part Number		Status	Compliance	Configuration	: Package Type		Peak Pluse Power Dissipation Pres (W)	Reverse Standoff Voltage Vress(V)
Q. Search Table		Active	· Automotive	Bidirectional	AK	1	č	
		New Product	© Rolts	Unidirectional	DO-15		≥ 150 ≤ 30000	≥ 3.3 ≤ 512
Y RESET FILTERS		Allocation	Pb-Free		DO-201AE	- 1	150	3.3
		NRND	Halogen Free		DO-218AB		200	5
		Obsoleted			DO-221AC		400	5.5
		PIN Change			DO-41		500	5.8
					8.6			
SM4F5.0CA	BORDE	* New Product	B B	Bidirectional	\$00-123FL	0	400	5
15KP200CAL	DOREE	* New Product		Bidirectional	R-6	0	15000	200
15KP75CAL	BOREM	* New Product		Bidirectional	R-6		15000	75
SMA6J12CAFLQ	BOREE	* New Product	× 8 8	Bidirectional	DO-221AC	ö	600	12
SM5S18CAHE3	DORES	* New Product		Bidirectional	DO-218AB		3600	18

Online TVS Diodes Catalog

TVS Diodes Guide